536 research outputs found

    Differentiable Graph Module (DGM) for Graph Convolutional Networks

    Get PDF
    Graph deep learning has recently emerged as a powerful ML concept allowing to generalize successful deep neural architectures to non-Euclidean structured data. One of the limitations of the majority of current graph neural network architectures is that they are often restricted to the transductive setting and rely on the assumption that the underlying graph is known and fixed. Often, this assumption is not true since the graph may be noisy, or partially and even completely unknown. In such cases, it would be helpful to infer the graph directly from the data, especially in inductive settings where some nodes were not present in the graph at training time. Furthermore, learning a graph may become an end in itself, as the inferred structure may provide complementary insights next to the downstream task. In this paper, we introduce Differentiable Graph Module (DGM), a learnable function that predicts edge probabilities in the graph which are optimal for the downstream task. DGM can be combined with convolutional graph neural network layers and trained in an end-to-end fashion. We provide an extensive evaluation on applications in healthcare, brain imaging, computer graphics, and computer vision showing a significant improvement over baselines both in transductive and inductive settings

    Conditional Generative Data Augmentation for Clinical Audio Datasets

    Full text link
    In this work, we propose a novel data augmentation method for clinical audio datasets based on a conditional Wasserstein Generative Adversarial Network with Gradient Penalty (cWGAN-GP), operating on log-mel spectrograms. To validate our method, we created a clinical audio dataset which was recorded in a real-world operating room during Total Hip Arthroplasty (THA) procedures and contains typical sounds which resemble the different phases of the intervention. We demonstrate the capability of the proposed method to generate realistic class-conditioned samples from the dataset distribution and show that training with the generated augmented samples outperforms classical audio augmentation methods in terms of classification performance. The performance was evaluated using a ResNet-18 classifier which shows a mean Macro F1-score improvement of 1.70% in a 5-fold cross validation experiment using the proposed augmentation method. Because clinical data is often expensive to acquire, the development of realistic and high-quality data augmentation methods is crucial to improve the robustness and generalization capabilities of learning-based algorithms which is especially important for safety-critical medical applications. Therefore, the proposed data augmentation method is an important step towards improving the data bottleneck for clinical audio-based machine learning systems

    Acquisition models in intraoperative positron surface imaging

    Get PDF
    PURPOSE: Intraoperative imaging aims at identifying residual tumor during surgery. Positron Surface Imaging (PSI) is one of the solutions to help surgeons in a better detection of resection margins of brain tumor, leading to an improved patient outcome. This system relies on a tracked freehand beta probe, using [Formula: see text]F-based radiotracer. Some acquisition models have been proposed in the literature in order to enhance image quality, but no comparative validation study has been performed for PSI. METHODS: In this study, we investigated the performance of different acquisition models by considering validation criteria and normalized metrics. We proposed a reference-based validation framework to perform the comparative study between acquisition models and a basic method. We estimated the performance of several acquisition models in light of four validation criteria: efficiency, computational speed, spatial accuracy and tumor contrast. RESULTS: Selected acquisition models outperformed the basic method, albeit with the real-time aspect compromised. One acquisition model yielded the best performance among all according to the validation criteria: efficiency (1-Spe: 0.1, Se: 0.94), spatial accuracy (max Dice: 0.77) and tumor contrast (max T/B: 5.2). We also found out that above a minimum threshold value of the sampling rate, the reconstruction quality does not vary significantly. CONCLUSION: Our method allowed the comparison of different acquisition models and highlighted one of them according to our validation criteria. This novel approach can be extended to 3D datasets, for validation of future acquisition models dedicated to intraoperative guidance of brain surgery

    Sonification as a Reliable Alternative to Conventional Visual Surgical Navigation

    Full text link
    Despite the undeniable advantages of image-guided surgical assistance systems in terms of accuracy, such systems have not yet fully met surgeons' needs or expectations regarding usability, time efficiency, and their integration into the surgical workflow. On the other hand, perceptual studies have shown that presenting independent but causally correlated information via multimodal feedback involving different sensory modalities can improve task performance. This article investigates an alternative method for computer-assisted surgical navigation, introduces a novel sonification methodology for navigated pedicle screw placement, and discusses advanced solutions based on multisensory feedback. The proposed method comprises a novel sonification solution for alignment tasks in four degrees of freedom based on frequency modulation (FM) synthesis. We compared the resulting accuracy and execution time of the proposed sonification method with visual navigation, which is currently considered the state of the art. We conducted a phantom study in which 17 surgeons executed the pedicle screw placement task in the lumbar spine, guided by either the proposed sonification-based or the traditional visual navigation method. The results demonstrated that the proposed method is as accurate as the state of the art while decreasing the surgeon's need to focus on visual navigation displays instead of the natural focus on surgical tools and targeted anatomy during task execution

    How molecular imaging will enable robotic precision surgery: the role of artificial intelligence, augmented reality, and navigation

    Get PDF
    Molecular imaging is one of the pillars of precision surgery. Its applications range from early diagnostics to therapy planning, execution, and the accurate assessment of outcomes. In particular, molecular imaging solutions are in high demand in minimally invasive surgical strategies, such as the substantially increasing field of robotic surgery. This review aims at connecting the molecular imaging and nuclear medicine community to the rapidly expanding armory of surgical medical devices. Such devices entail technologies ranging from artificial intelligence and computer-aided visualization technologies (software) to innovative molecular imaging modalities and surgical navigation (hardware). We discuss technologies based on their role at different steps of the surgical workflow, i.e., from surgical decision and planning, over to target localization and excision guidance, all the way to (back table) surgical verification. This provides a glimpse of how innovations from the technology fields can realize an exciting future for the molecular imaging and surgery communities.Imaging- and therapeutic targets in neoplastic and musculoskeletal inflammatory diseas

    Interventional tool tracking using discrete optimization.

    No full text
    This work presents a novel scheme for tracking of motion and deformation of interventional tools such as guide-wires and catheters in fluoroscopic X-ray sequences. Being able to track and thus to estimate the correct positions of these tools is crucial in order to offer guidance enhancement during interventions. The task of estimating the apparent motion is particularly challenging due to the low signal-to-noise ratio (SNR) of fluoroscopic images and due to combined motion components originating from patient breathing and tool interactions performed by the physician. The presented approach is based on modeling interventional tools with B-splines whose optimal configuration of control points is determined through efficient discrete optimization. Each control point corresponds to a discrete random variable in a Markov random field (MRF) formulation where a set of labels represents the deformation space. In this context, the optimal curve corresponds to the maximum a posteriori (MAP) estimate of the MRF energy. The main motivation for employing a discrete approach is the possibility to incorporate a multi-directional search space which is robust to local minima. This is of particular interest for curve tracking under large deformation. This work analyzes feasibility of employing efficient first-order MRFs for tracking. In particular it shows how to achieve a good compromise between energy approximations and computational efficiency. Experimental results suggest to define both the external and internal energy in terms of pairwise potential functions. The method was successfully applied to the tracking of guide-wires in fluoroscopic X-ray sequences of several hundred frames which requires extremely robust techniques. Comparisons with state-of-the-art guide-wire tracking algorithms confirm the effectiveness of the proposed method. © 1982-2012 IEEE

    Shrec'16 Track: Retrieval of Human Subjects from Depth Sensor Data

    No full text
    International audienceIn this paper we report the results of the SHREC 2016 contest on "Retrieval of human subjects from depth sensor data". The proposed task was created in order to verify the possibility of retrieving models of query human subjects from single shots of depth sensors, using shape information only. Depth acquisition of different subjects were realized under different illumination conditions, using different clothes and in three different poses. The resulting point clouds of the partial body shape acquisitions were segmented and coupled with the skeleton provided by the OpenNI software and provided to the participants together with derived triangulated meshes. No color information was provided. Retrieval scores of the different methods proposed were estimated on the submitted dissimilarity matrices and the influence of the different acquisition conditions on the algorithms were also analyzed. Results obtained by the participants and by the baseline methods demonstrated that the proposed task is, as expected, quite difficult, especially due the partiality of the shape information and the poor accuracy of the estimated skeleton, but give useful insights on potential strategies that can be applied in similar retrieval procedures and derived practical applications. Categories and Subject Descriptors (according to ACM CCS): I.4.8 [IMAGE PROCESSING AND COMPUTER VISION]: Scene Analysis—Shap

    Evaluating the suitability of several AR devices and tools for industrial applications

    Get PDF
    In recent years, there has been an increasing interest in Industrial Augmented Reality (IAR) due to its prominent role in the ongoing revolution known as Industry 4.0. For companies and industries it is essential to evaluate carefully which of the developed AR-based technologies to adopt, and when, for tasks such as training, maintenance, assistance, and collaborative design. There is also a wide array of hardware and software alternatives on the market, characterized by a significant heterogeneity in terms of functionalities, performance and cost. With this work, our objective is to study and compare some widely available devices and Software Development Kits (SDKs) for AR by leveraging a set of evaluation criteria derived from the actual literature which have been deemed capable to qualify the above assets as suitable for industrial applications. Such criteria include the operative range, robustness, accuracy and stability. Both marker-based and marker-less solutions have been considered, in order to investigate a wide range of possible use cases
    • …
    corecore